IGBT - Short-Circuit Rated

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Non–Punch Through (NPT) Trench construction, and provides superior performance in demanding switching applications. Offering both low on state voltage and minimal switching loss, the IGBT is well suited for motor drive control and other hard switching applications.

Features

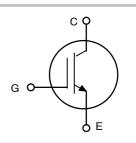
- Low Saturation Voltage Resulting in Low Conduction Loss
- Low Switching Loss in Higher Frequency Applications
- 5 µs Short Circuit Capability
- Excellent Current versus Package Size Performance Density
- This is a Pb–Free Device

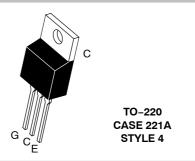
Typical Applications

- White Goods Appliance Motor Control
- General Purpose Inverter
- AC and DC Motor Control

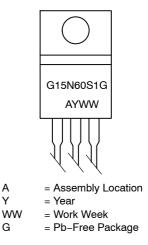
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	600	V
Collector current @ Tc = 25°C @ Tc = 100°C	Ι _C	30 15	A
Pulsed collector current, T_{pulse} limited by T_{Jmax}	I _{CM}	120	A
Gate-emitter voltage	V_{GE}	±20	V
Power dissipation @ Tc = 25°C @ Tc = 100°C	P _D	117 47	W
Short circuit withstand time V_{GE} = 15 V, V_{CE} = 400 V, T_J $\leq~$ +150°C	t _{SC}	5	μs
Operating junction temperature range	TJ	–55 to +150	°C
Storage temperature range	T _{stg}	–55 to +150	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

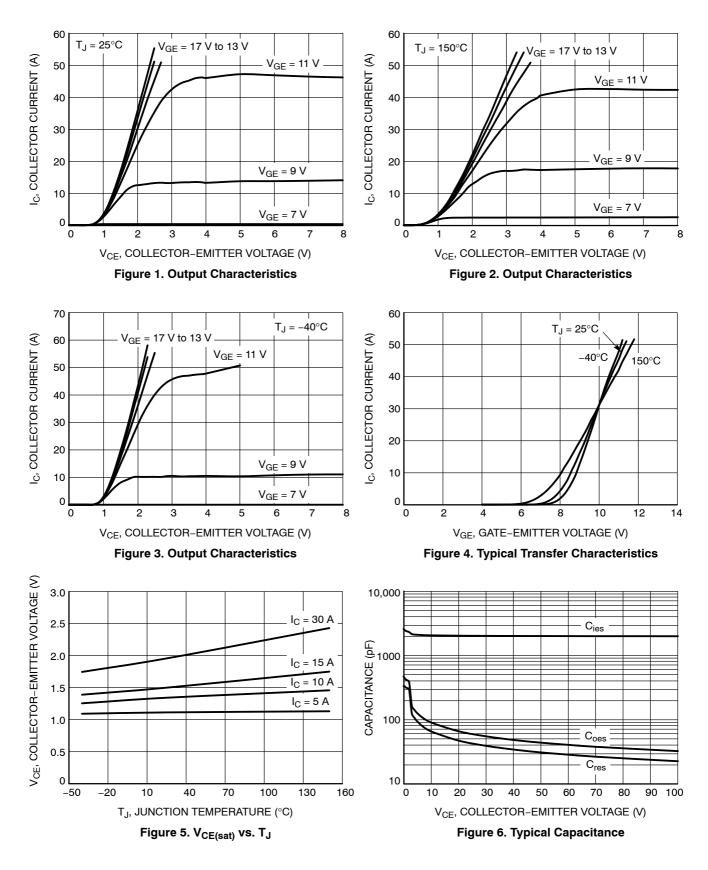

http://onsemi.com

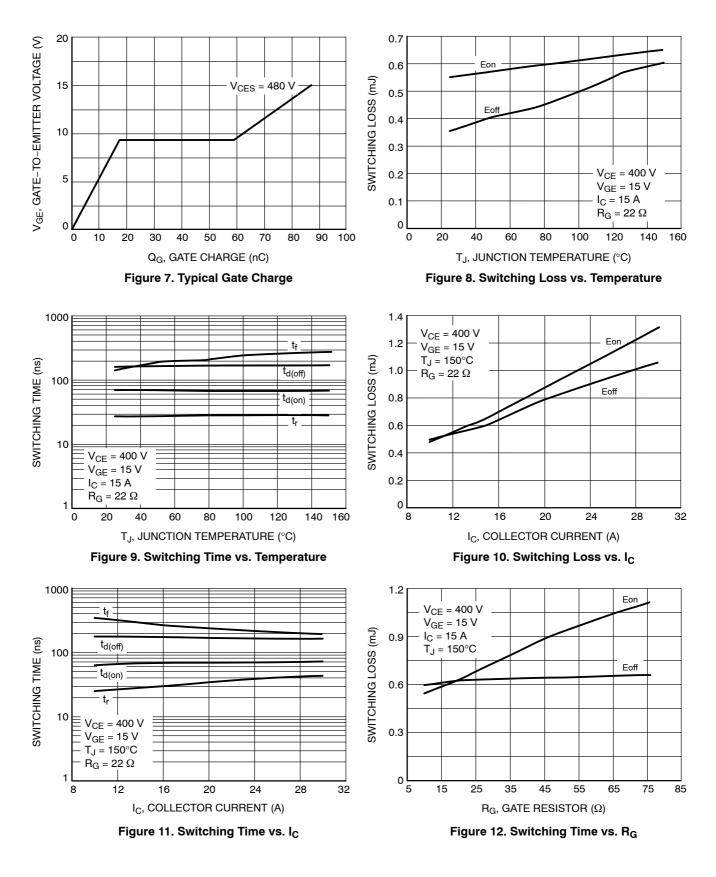
15 A, 600 V V_{CEsat} = 1.5 V

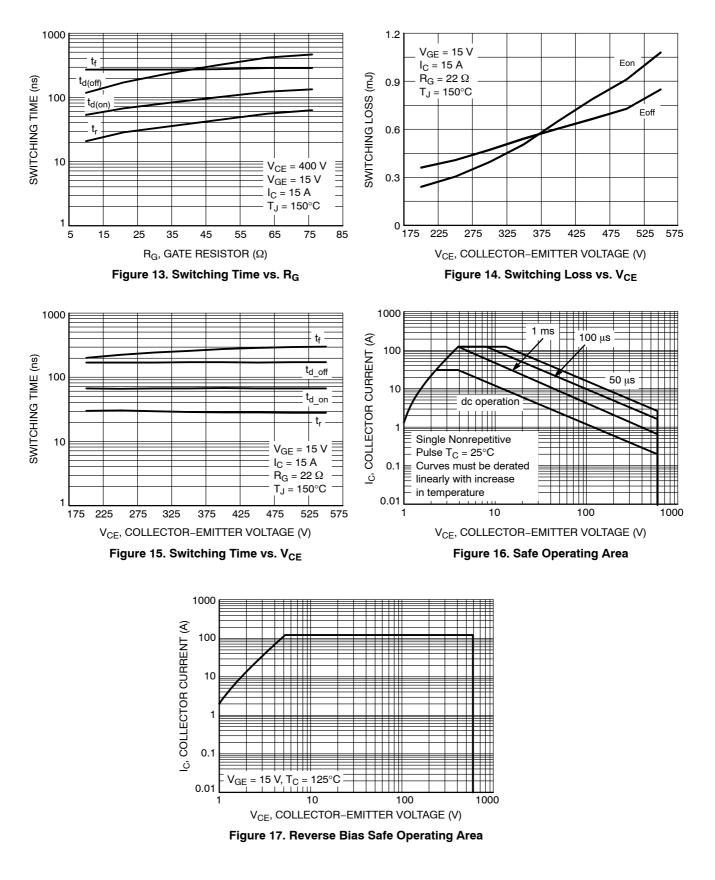
MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
NGTG15N60S1EG	TO-220 (Pb-Free)	50 Units / Rail


THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal resistance junction to case, for IGBT	$R_{\theta JC}$	1.06	°C/W
Thermal resistance junction to ambient	$R_{ hetaJA}$	60	°C/W


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
STATIC CHARACTERISTIC		-		•	•	<u></u>	
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I_C = 500 μA	V _{(BR)CES}	600	-	-	V	
Collector-emitter saturation voltage	V_{GE} = 15 V , I _C = 15 A V _{GE} = 15 V , I _C = 15 A, T _J = 150°C	V _{CEsat}	1.3 1.55	1.5 1.75	1.7 1.95	V	
Gate-emitter threshold voltage	V_{GE} = V_{CE} , I_C = 250 μ A	V _{GE(th)}	4.5	5.5	6.5	V	
Collector-emitter cut-off current, gate-emitter short-circuited	V_{GE} = 0 V, V_{CE} = 600 V V_{GE} = 0 V, V_{CE} = 600 V, T_{J} = 150°C	I _{CES}	-	10 -	_ 200	μΑ	
Gate leakage current, collector-emitter short-circuited	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	-	-	100	nA	
Forward Transconductance	V_{CE} = 20 V, I_{C} = 15 A	9fs	-	10.1	-	S	
DYNAMIC CHARACTERISTIC							
Input capacitance		C _{ies}	-	1950	-		
Output capacitance	V_{CE} = 20 V, V_{GE} = 0 V, f = 1 MHz	C _{oes}	-	70	-	pF	
Reverse transfer capacitance		C _{res}	-	48	-		
Gate charge total		Qg	-	88	-	nC	
Gate to emitter charge	V_{CE} = 480 V, I _C = 15 A, V _{GE} = 15 V	Q _{ge}	-	16	-		
Gate to collector charge		Q _{gc}	-	42	-		
SWITCHING CHARACTERISTIC , INDUCTIVE	LOAD						
Turn-on delay time		t _{d(on)}	-	65	-		
Rise time		t _r	-	28	-		
Turn-off delay time	T _J = 25°C	t _{d(off)}	-	170	-	ns	
Fall time	$V_{CC} = 400 \text{ V}, I_C = 15 \text{ A}$ B ₂ = 22 Q	t _f	-	140	-		
Turn-on switching loss	$R_g = 22 \Omega$ $V_{GE} = 0 V / 15 V^*$	Eon	-	0.550	-		
Turn-off switching loss		E _{off}	-	0.350	-	ns mJ	
Total switching loss		E _{ts}	-	0.900	-		
Turn-on delay time		t _{d(on)}	-	65	-		
Rise time		t _r	-	28	-		
Turn-off delay time	T.I = 150°C	t _{d(off)}	-	180	-	ns	
Fall time	V _{CC} = 400 V, I _C = 15 A	t _f	-	260	-	1	
Turn-on switching loss	R _g = 22 Ω V _{GE} = 0 V / 15 V*	E _{on}	-	0.650	-		
Turn-off switching loss		E _{off}	-	0.600	-	mJ	
Total switching loss		E _{ts}	-	1.250	-		

*Includes diode reverse recovery loss using NGTB15N60S1EG.

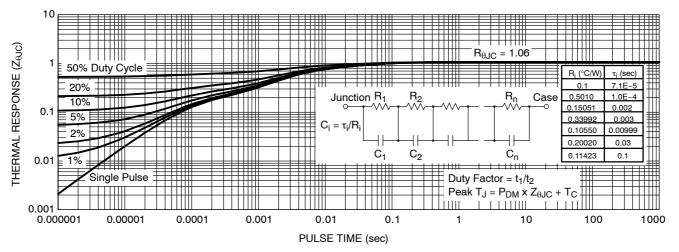


Figure 18. IGBT Transient Thermal Impedance

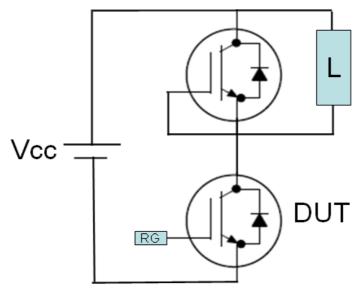
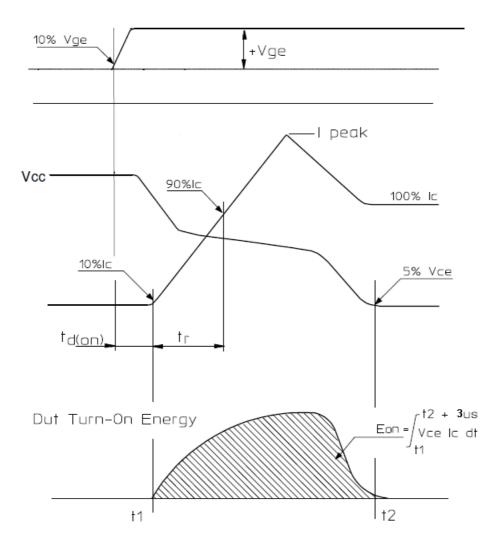



Figure 19. Test Circuit for Switching Characteristics

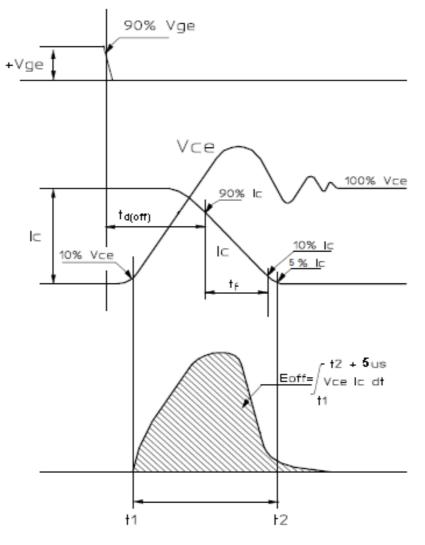
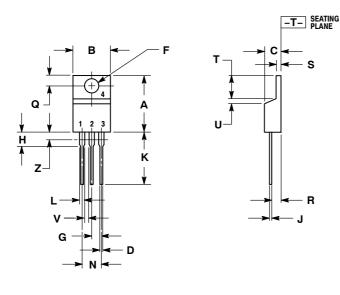



Figure 21. Definition of Turn Off Waveform

PACKAGE DIMENSIONS

TO-220 CASE 221A-07 ISSUE O

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
Κ	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Ζ		0.080		2.04
style Pin	1. MAI	N TERMIN N TERMIN F		

1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

NOTES

4. MAIN TERMINAL 2

ON Semiconductor and we registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC dates here and/or specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use system alleges t

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative